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Abstract. A relativistic quark model, which is closely related to the non-relativistic harmonic 
oscillator model, is presented for mesons with spin-t quarks. The conventional quark model 
spectrum is reproduced, with particles lying on straight line trajectories, although for 
PC = 1 states large masses are predicted. The relativistic approach used throughout 
gives rise naturally to spin-orbit terms. These terms are analogous to those which arise 
in the Melosh approach. The comparisons of the model predictions with data is encouraging 
and the results include meson decay widths for emission of a pseudoscalar meson or a 
photon. 

1. Introduction 

The ability of the symmetric, non-relativistic harmonic oscillator model to classify 
mesons and baryons and to describe some features of their interactions is well established 
(Gell-Mann 1964, Greenberg 1964, Dalitz 1966, 1967, Faiman and Hendry 1968, 1969, 
Copley et al 1969, Katyal and Mitra 1970, Choudhury and Mitra 1970) and there have 
been several attempts to derive a relativistic generalization of the model (Feynman, 
Kislinger and Ravndal (FKR) 1971, Rosner 1972, Bohm, Joos and Krammer (BJK) 1973). 
We will also produce a relativistic generalization but we confine ourselves to mesons. 

In the meson case one has a bound-state problem for a quark and antiquark and 
field theory suggests the Bethe-Salpeter (BS) equation as a starting point. Unfortunately, 
this equation is difficult to solve exactly, even for simple interactions (Sundaresan and 
Watson 1970) and so some approximation scheme is required if we are to abstract the 
systematics rather than get involved in numerical solutions. The assumption that the 
quark mass is large provides a basis for an approximate solution. 

BJK demonstrate one approach where they solve the zero mass problem exactly for 
the harmonic oscillator interaction, and then find the finite mass solutions by a pertur- 
bation expansion in Mhadro JMquark, We, on the other hand take the infinite quark mass 
limit of the BS equation from the outset (Susskind 1968). We do this in order to generate 
a relativistic expression similar in form to that of the non-relativistic quark model. The 
resulting linear equation is more tractable and we simplify and define the problem 
further by demanding that the squared equation has harmonic oscillator form. This 
ensures that the equation is easy to solve, but makes the interactions less realistic. Once 
we have arrived at this linear equation we regard it as the model and view the quarks as 
inseparable from the hadron. Of course, in this Triew the quark mass can have little 
meaning. 

t Present Address : Department of Natural Philosophy, The University, Glasgow, UK. 
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1682 P J Walters, A M Thomson and F D Gault 

We are able to calculate the quark mass that enters our model from pion decay and 
it turns out to be the same order as the pseudoscalar meson mass, just as in the non- 
relativistic model. Although this would appear to invalidate our approximation scheme, 
we have taken a more abstract view of quarks as forming a simple representation of the 
internal degrees of freedom of the hadron. 

From this point of view a linear equation could be more appropriate than a BS 
equation. The motivation for this assertion is found in dual models (Susskind 1968). 
Indeed, our original aim was to build a model which was like the lowest order term in a 
dual quark model. For our purposes the Ramond model (Ramond 1971) is most suitable 
as it describes fermions and enables us to have spin-$ quarks. In this model, one has a 
linear equation in which the basic interaction is also linear in a set of orbital oscillator 
variables which are contracted with a set of spin excitation operators. Our model has 
just these features, but we have only one orbital degree of freedom whereas the dual 
models have an infinite number. 

The model of FKR may also be considered as a first step in a dual quark model, but 
there the analogy is with the Fubini-Veneziano model rather than the Ramond model 
as spin is not incorporated dynamically. As the FKR model is most closely related to 
our model, we compare and contrast the two approaches throughout the paper. 

Spin-orbit terms appear naturally in our formalism and affect our results in a com- 
parable way with that in which the Melosh transformation (Melosh 1973) between 
current and constituent quarks modified the non-relativistic results. Such terms also 
occur in FKR but in the currents, rather than in the states, as in our case, and then only 
in the axial current. 

When dealing with the 0- nonet we will assume no q, q' mixing and for the 1- nonet 
we take o, 4 to be ideally mixed. 

2. Themodel 

Consider two quarks of momenta p1 and p 2  bound by a covariant potential V The BS 
equation is 

(2.1) 

and if the quark mass m, is large the equation can be approximated by (Susskind 1968) 

(a1 - mq)4(P2 - mq) = v4 

where mo is the effective quark mass. Here we consider only the quark-quark equation. 
The quark-antiquark result is derived using the charge conjugation matrix. Substituting 
for the centre of mass and relative momentum variables P ,  q given by p1 = $P+q,  
p z  = $P - q, the equation becomes 

Our four-vector conventions are those of Bjorken and Drell(l964). 

their model from a BS equation for scalar quarks 
We choose the form of the interaction in the same way as FKR. As one can derive 
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giving as mq --+ CO 

the method i s  strictly analogous. For harmonic oscillator interaction this becomes 

[p:  + p :  + 2 0 2 X 2  + c]4 = 0 

[+P2 + 2(q2 + 0 9 x 2 )  + c]f$ = 0 

where x’ = -i(d/aq,) = x y - x ; ,  is the relative separation of the quarks and ‘c’ is a 
constant. Introducing creation and annihilation operators 

we obtain 

K = $ [ P 2  - M 2 ]  = $ [ P 2  + Ru$’ + 2 ~ ]  

(2.7) 

where R = 8 0  and P 2  = M 2  is the meson mass squared. 
To obtain the interaction for spinor quarks we linearize in the spin space +@+ to get 

tP,(yy+y$) - M - $JR(a+at+a-at). (2.9) 

To ensure that the squared equation has oscillator form, we must eliminate terms 
quadratic in up and apt by the conditions 

a”+: = a!aL 0. (2.10) 

Equation (2.3) determines the way in which the internal momenta enter equation (2.9). 

(2.1 1) 

where Lorentz and parity invariance indicate how P ,  can be expanded in terms of 
Fermi bilinear covariants. Using equation (2.1 1) one can deduce that 

(2.12) 

These constraints suggest the form 
a, - 1 
f - Tu+P,)(Y?--Y$) 

a’ f - - d b M ) ( Y ? - - Y $ )  1 

and the square root equation becomes 

[ ~ ~ , ( y ~ + y ~ ) - m , + $ J S Z ( u + a + o ! _ a + ) ] ~  = 0. 

Explicitly 

(2.13) 

+JR(u+a + a - a + )  = (y: - y $ ) q p -  icoyiyi(yf - y $ ) x ,  (2.14) 

we deduce that 

W , > X 2 )  = - - i ~ Y M Y ? - Y $ ) ( X 1  -x2) , .  (2.15) 

This form of the interaction, linear in position variables, which, like the momenta, are 
contracted with Dirac matrices can be seen to arise from the position momentum 
symmetry characteristic of the harmonic oscillator. Equation (2.14) is clearly invariant 
under the interchange q, e, - ioyiyix,. 
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We note that because the interaction U ( x , ,  xz) does not contain a scalar potential 
we are unable to cancel the large quark mass, mqr on which we have based our derivation, 
to get a small effective quark mass m, . The apparent inconsistency which arises from 
m, being in fact mg we shall ignore in order to take advantage of the mq + CO ansatz. 
The obvious advantage is the elimination of quark propagator effects which establishes 
a close relation between our relativistic results and non-relativistic results. This 
philosophy is entirely consistent with that of FKR (scalar quarks against our spinor 
quarks) and our desire to establish a calculational prescription from which we can 
abstract systematics. 

A further advantage ofthe infinite quark mass picture is that we can regard the internal 
motion of the constituent quarks as non-relativistic (although we are then obliged to 
neglect the relative energy in the centre of mass). This allows us to replace the four- 
dimensional operators, a,,, by 

As q,, = (0, a) in the rest frame, the close relationship with the non-relativistic model is 
clear. As well, the negative norm time-like states are eliminated. These states in the 
FKR model are decoupled from physical states by a gauge condition and this has the 
effect of violating unitarity. As a consequence, the FKR matrix elements are too large 
and they are obliged to reduce them by using 'an adjustment factor'. 

3. Properties of the wavefunctions 

The solutions to equation (2.13) can be built up in a Fock space with a vacuum IO,) 
defined by 

?"IO,) = 0. (3.1) 
This is just the ordinary non-relativistic oscillator ground state in the rest frame. A 
general solution of equation (2.13) can then be written as 

I$,) = $,(?,?+)lo,> (3.2) 
where I), is a 4 x 4 matrix. In calculations, quark operators act on t+bp from the right, 
while antiquark operators act from the left. The invariance properties of the solutions 
under charge conjugation, Lorentz and parity transformations are defined in the same 
way as for the BS wavefunctions. In particular, charge conjugation is defined by 

Because the wavefunction does not depend on the relative energy (a consequence of 
the infinite quark mass approach) we can not use the invariant measure d4q. This 
requires redefinition of the scalar product which we do in a way motivated by FKR. 
That is, we replace IO,) by IO) the four-dimensional vacuum state, which also satisfies 
(3.2). The spin part of the scalar product is defined in the usual way, so we have 

( 6 P 2 l $ P l )  = (qTr 6 p 2 ( ? 1 7  ? z ) $ p l ( ? l  7 

where 

(3.4) 
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We normalize the wavefunctions by using the matrix elements of the quark current 
at zero momentum transfer. These define the quark charge, e , ,  and give 

( $,~-q$,) = -(OITr 7,(vt9 v)Yp$,(v> v+)lO) = 2p,. (3.5) 

We compare this with the corresponding BS normalization (figure 1). 

which for large m, becomes - - m,Tr( $,y,,l(/,) and we note that our normalization in 
(3.5) is consistent with the general approach. 

P 4  p-p iP -k  (P+q)--P 

Figure 1. Current normalization in the Bethe-Salpeter equation 

{P+k+q 

q--0 

As is obvious from the above, the minimal vector current for the quarks is 

(3.7) 

with F = exp( - q2/212) and the centre of mass phase factor neglected. The axial current 
is 

- 4 . a  4 = -AqY5Y,F exp ($) ..PiT) 

Neglecting the unitary spin factor the antiquark operators are given by 

(3.9) 

where T,, is either y, or y s y p .  The corresponding antiquark matrix elements are given by 

4. The solutions 

The solutions for the model were found by the direct method of writing equation (2.13) 
as a set of coupled equations at the Pauli spinor level in the rest frame, and algebraically 
reducing them to a single equation. The restrictions of charge conjugation and parity 
were applied from the outset to divide the solutions into two classes characterized by the 
value of PC.  The classes are PC = - 1 which corresponds in the non-relativistic quark 
model to spin zero, and PC = + 1 which corresponds to spin one. This relation between 
PC and quark spin is maintained in the relativistic wavefunctions, but only in general by 
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large components. With some manipulation one finds that the large components are 
eigenstates of the number operator and this is used to construct the full solution. This 
solution, re-written in covariant form, can then be verified by substituting it back into 
equation (2.13). Details are given in the appendix. 

4.1. PC = - 1  

We reproduce the non-relativistic result that the C = (- 1)'' P = (- 1)' mesons are 
forbidden and this follows directly from the requirement that the interaction be three 
dimensional. In general however, the interaction can be four dimensional, in which case 
this result becomes strongly dependent on the spin-space structure of the interaction 
(Bohm et al 1973). 

The solution for a PC = - 1 state of mass m and spin quantum numbers ( J ,  J , )  is 

(4.1) 

for C = ( -  l)', P = ( -  l)'+ '. IN,, J ,  Jz) is an eigenstate of the harmonic oscillator 
number operator, -q)f', with eigenvalue N ,  and J ,  J ,  are orbital angular momentum 
quantum numbers. We note that in the limit S2 -, 0 the solution reduces to that for a 
free (mass ma) quark and antiquark with relative momentum zero and consequently 
there is no admixture of undesirable negative energy states. We also note that the ground 
state pseudoscalar solution, 

is simply a boosted non-relativistic solution. 
The particles lie on straight Regge trajectories: 

m2 = mt + Q N ,  N = 0 , 1 , 2  ) . . .  . (4.3) 
If we choose the slope of the trajectory to be Q- = 1 and take for m: the average of the 
square of the pseudoscalar meson masses, mi  = 0.25 GeV2 we reproduce reasonably 
this section of the mass spectrum (figure 2). 

(Pz-m;, ln 

Figure 2. Predicted mass spectrum for PC = - 1 mesons 
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The presence of terms containing the inverse of the pseudoscalar mass gives rise to 
large symmetry breaking and the Van Royen-Weisskopf paradox (Van Royen and 
Weisskopf 1967a,b). As this results in unreasonable predictions and not only for 
pseudoscalar meson decay matrix elements, we avoid it by using predicted rather than 
physical masses in equation (4.1). Then the 0- solution (4.2) has the same spin structure 
as that postulated by Gudeus (1969). 

In the BS model of BJK the 0- solutions have a similar form but P/m is replaced by 
P/mquark. This has the advantage of resolving the Van Royen-Weisskopf paradox in a 
natural way (Llewellyn-Smith 1969). 

Finally, it is interesting to observe that in fixing the slope parameter, we have fixed 
the size of the hadron (Le Yaouanc et a1 1972). The space part of the ground state wave- 
function is 

( r  = x,-x210,=,) - exp ( - - exp (2) (4.4) 

where R 2  = l/o = 8/Q - 8 natural units. R is essentially the average separation of the 
quarks and determines the size of the meson. The meson cross section is nR2 - 24 
natural units - 10 mb, which is not unreasonable. 

4.2. PC = +l  

In solving for the PC = + 1 we have the added difficulty that the solutions are not, in 
general, unique. However, for special cases, including the leading trajectory, the states 
are unambiguous. These cases occur when the spin is equal to the orbital angular 
momentum in the large components. 

The problem of the ambiguity arises because the eigenvalue equation at the Pauli 
spinor level demands an eigenstate of the number operator. As a direct consequence 
the quark spin and the orbital angular momentum are decoupled and for a given meson 
spin two possible values of orbital angular momentum are allowed. This degeneracy 
has the compensation that there is no spin-orbit splitting. Also, as the first such case 
occurs for a spin-one meson with N = 2 the effect is irrelevant for practical calculations. 
The criterion we impose to  get a general solution is to require the rest frame wavefunction 
to have no spin-zero component, in accord with the unambiguous solutions. 

The unnormalized PC = + 1 states are thcn given by 

where C = P = ( -  l)', cP is a spin-one wavefunction and G(Pqt ry )  is the Levi-Civita 
tensor dotted into four four-vectors. The solution has not been separated into its possible 
spin states of 1 + 1, 1- 1 and 1. As in the PC = - 1 solution we note that in the limit 
Q + 0 the solution reduces to that for a free quark and antiquark (mass m,) with relative 
momentum zero and we are able to conclude that there is no negative energy admixture. 

The term d t r .  q/ (m2 -mi) ,  which vanishes in the case J = I, is responsible for adding 
the extra orbital angular momentum in the large components for the cases, J = I +  1, 
where the solution is not unique. 

In order to understand the significance of the other terms in equation (4.5) it is easiest 
to consider the ground state vector meson solution 
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The term involving [m+ ( m J / m ) ]  is closely related to a boosted non-relativistic wave- 
function. In fact, if m, = m it is just that and the term reduces to the solution of Gudeus 
(1969). The vector meson solution of BJK, 

is also similar to this term. 
In the last term of equation (4.6), the quark spin is coupled to a P-wave orbital state 

(in the small components) and hence corresponds to a spin-orbit interaction. This feature 
is absent from the solutions of BJK and Gudeus. Experiments, on the other hand, 
indicate the necessity of some spin-orbit coupling, even if it is not the amount predicted 
and consequently we regard this property of the solution as most desirable. The presence 
of this spin-orbit interaction does not contradict our previous assertion that there is no 
spin-orbit splitting. 

The mass spectrum is again linear and independent of any arbitrariness of the 
solutions. It is 

With the parameters given previously the mass of the vector meson is predicted to be 
1.58GeV, or about twice the correct answer. Despite the fact that this result, which 
comes from a strong spin-spin interaction, is much too big, it is clear that spin-spin 
coupling is needed to make the vector mesons more massive than the pseudoscalar 
nonet. In calculations we will take the PC = 1 trajectory to be 

m: = mg + Zt(N + 0.5). (4.9) 

We have chosen the numbers so that the average value of the vector meson mass 
squared is approximately correct. Also, as might be anticipated in view of the non- 
relativistic approximation of the internal motion, the quantum number spectrum 
displayed in figure 3 is identical to that given by the non-relativistic quark model. 

I / !  I 16 i l * + A ,  I :I-- 

I I I 

l o T t 6  
n L 

0 I 2 3 4 

CCP* - m i  1 In1 -2 

Figure 3. Predicted mass spectrum for PC = + 1 mesons. 
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5. Applications 

Following FKR we calculate experimental observables from current matrix elements, 
neglecting quark propagation effects (mq -, CO). Unlike FKR, we have a problem with 
our vector currents as they are not, in general, conserved. For particular cases however, 
they are and these cover most of the important applications. The specific cases where the 
electromagnetic current is conserved are the equal mass transition and the PC = + 1 to 
pseudoscalar mesen transition. For the rest, we add a momentum term to the coupling 
to ensure conservation. 

5.1. Lepton decays of pseudoscalar and vector mesons 

From the correspondence in 0 3 between the BS and current normalization we have 
$ss = a$ where a = l/Jmq. The pseudoscalar meson decay matrix element is then 
given by 

(VaclA,(O)IO-+meson) = aTry,y,$,(x, = 0) =fpP, (5.1) 

$p(x, = 0) is the pseudoscalar wavefunction at the origin. The result is 

As already mentioned, we cannot use the physical masses because of the l/mp term 
which will give rise to the large symmetry breaking in the Van Royen-Weisskopf 
paradox. We avoid this difficulty by using unbroken masses, mp = mo which give 

(5.3) 

Comparing with experimental values (Particle Data Group 1973) fPp = 0.105 GeV, 
f',"P = 0.095 GeV we see that 'a' is compatible with unity and a small quark mass. This 
is consistent with the earlier identification of mq and mo but incompatible with the heavy 
quark approximation. However, we are not using a heavy quark approximation in our 
calculation of matrix elements, rather we are using it to generate relativistic expressions 
similar in form to those of the non-relativistic quark model. The quarks themselves are 
regarded as being inseparable from the hadron where the quark mass can have little 
meaning. 

Similarly, the vector meson decay to a pair of leptons is predicted. Neglecting the 
unitary spin factor, we have 

(5.4) 

fL = f, = 0.1 12a GeV. 

( Vac1 V,(O)( 1 - 'meson) = aTry,$,(x = 0) = gvm,fVp 

which gives the result 

3 
-g+ = 3g, = g, = 
J2 

The experimental result is 

3g, = 0.156 GeV, g, = 0.160GeV. (5.6) 
3 

-g - 0.168 GeV, 
J2 + - 

Taking a = 1 we get about half the experimental result which is comparable with 
other quark models. For example BJK predict g, to be about twice the experimental 
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value with the quark mass determined from pion decay, while FKR predict gn = gk = g, 
etc. 

5.2. Matrix elements of the vector current 

The form for Kn coupling in K,, decay is calculated from the matrix element of the vector 

E f+(q)(pk + pn)p + f-(q)(pk - p n ) p  ' 

To be consistent, we evaluate (5.7) using unbroken masses, mn = m, = mo and predict 
f-(q2) = 0. This does not agree with the experimental result of f-(O) =f+(O) N 1.0 
(Particle Data Group 1973). As this disagreement is attributable to current conservation 
and the use of unbroken masses it is clear that a symmetry breaking scheme must be 
added to our model if these results are to be well described. Had we used physical masses 
in (5.7) we would have achieved good predictions but violated our prescription for 
calculation. 

We have more success in predicting the electromagnetic decays of the vector mesons. 
Neglecting the unitary spin factor we obtain for the matrix element of the quark current 

Tq = -i(n(d'*5;(0)11+-meson) 

where the kinematics are indicated in figure 4. 

Figure 4. Kinematics of decay by emission of a photon or pseudoscalar meson. 

The first term in equation (5.8) corresponds to an orbital magnetic moment, while 
the second is analogous to an intrinsic moment. The antiquark amplitude differs only 
in sign, so combining with the unitary spin factor we get the results in table 1. 

Table 1. Predicted coupling constants for electromagnetic decays compared with data 
from Ebel et al (1971) 

WO -+ Roy -2.2 - 2.89 k 0.26 
$0 + Roy 0 - 0.1 6 k 0.02 
$0 + qoy -1.2 -0.82+_0.12 
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The coupling constant, g,, is defined by 

T = egyb(qt:Plrl) (5.9) 

and we have used unbroken masses in its evaluation. The quantities dotted into the 
Levi-Civita tensor are taken at their physical values, primarily for convenience, as any 
other procedure has a minor effect on the results. 

5.3. Meson decays by emission of a pseudoscalar meson 

Following FKR we calculate the amplitude for pseudoscalar meson emission by 
replacing the pseudoscalar meson interaction by the divergence of the axial vector 
current which is given by 

(5.10) 

In the decays 1' -+ l - O - ,  2 +  + 1-0- the corresponding vector current is not conserved 
and consequently we should adjust the axial vector current to be 

where g ,  , g 2  are constrained to ensure electromagnetic current conservation and 
g :  + g i  = 1. For the actual prediccions presented in table 4, we use equation (5.10). 

The overall strength of the interaction is determined by one adjustable parameterf, 
and the decay amplitude from an initial state, i, to a final state,$ by emission of a 
pseudoscalar i s  

(5.12) 

where the summation is over quarks and antiquarks. Expressions for the matrix 
elements with the unitary factor Aq removed are given in table 2. 

Decay widths are calculated using the formula 

(5.13) 

where q is the three momentum of the decay products (in the rest frame of the initial 
particle i) and the summation is over the initial and final spins. The factor R is to account 
for the different charge modes allowed in the decay (see FKR). 

In calculating the decay widths the dynamical quantities, the decay constants, are 
input using unbroken masses, while for the kinematic phase space, we use physical 
masses. For example, the decay width 

(5.14) 

is calculated by putting physical masses into 141 and unbroken masses into (g,",). 
As can be seen from table 3, this prescription yields good agreement with data. 

However, this is not surprising as it is simply reflecting the SU(3) symmetry ofthe coupling 
constants. In the FKR model the relative values of decay width for a given decay type 
are in less good agreement with data but this is due to the symmetry breaking introduced 
by using physical masses throughout. This problem is particularly acute in the case of 
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Table 2. Amplitudes for decays by emission of a pseudoscalar meson. 

Decay type Quark amplitude 
-i(f la,A;li) 

Antiquark amplitude 
- i(f la,,A$i) 

1 - -  + 0 - + 0 - +  

2 + -  + o - + o - +  

2 + -  ~ 1 - -0-+ 

1 + -  + 1 - - 0 - +  

I + +  + 1 - - q - +  

Abbreviations : 

T=m:+m:+m< p l . p 2  =+(mi+mi-m:) 

T2"8 is a spin-two wavefunction. 

decays into two pseudoscalar mesons where different results are obtained depending on 
which meson is replaced by the axial current. The use of unbroken masses avoids this 
asymmetry. 

The value of the coupling constantfis expected to be close to that given by PCAC 
theory, that isf, =P,&,lm,g, = 1-65. Using this value for the coupling constant the 
decay widths are found to be too large and reduction to a value off = 1.46 GeV- is 
indicated in order to give a good fit to the data. We display the decay width data, our 
best fit, and that of FKR (r,) in table 3. 

The results for the vector and tensor decay widths are all within 20% of the experi- 
mental values, which is reasonably good considering that we have not introduced 
symmetry breaking, and it is an improvement on FKR. For the 2' -, 0- 1 - decays our 
results are less good than FKR's, however we could still modify our results by generating 
the axial vector current from a conserved current as in equation (5.1 1). 

In the other two types of decay considered, 1'- + 1-0- and 1'' + 1-0- we again 
have the problem that the underlying current is not conserved and consequently that 
these results could be improved. The results as calculated however are at least the 
correct order of magnitude and are no worse than those of FKR. On the other hand the 
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Table 3. Widths for decays by emission of a pseudoscalar meson. 

Decay type State Mode T(MeV) Texp(MeV) TFKR(MeV) 

1 -  -3 o-o- 

1 + -  + 1-0- 

l + +  + 1-0- 

2 +  -0-o- 

2 +  - 0 - 1 -  

~ 0 1 9 )  

~ ( 7 8 4 )  
K*(892) 

~ ( 7 6 5 )  

B(1235) 

K*( 1240) 
A 1070) 

f'( I5 14) 

f(1260) 

K *( 1420) 

A2( 1300) 

f ' (  15 14) 
K*( 1420) 

A2(13W 

K R  3.14 
P= 0 
nn 0 
KR 46.2 
7tK 46.2 
nn 117 

on 66 

K*n 47 
Pn 100 

K R  62 
nn 0 
K R  5.1 
KR 153 
Kn 54.7 
7CK 54.7 
Krl 2 
rlK 2 

n't_ 
rln 13.8 

13.8 
KK 7.4 

R K * + K K *  9.3 
K*7I 18.5 
PK 5.7 

P= 53 
o K  1.4 

2.5 + 0.3 
< 0.6 

0.1 3 + 0.03 
50.1 1.1 
50.1 + 1.1 
146,lO 

120+20 

2 w o o  

40+ I O  

8 + 5  
130+ 12 
55+6 
55+6 

- 100 

-0 

- 2  
-2 

15k1.5 
15+ 1.5 
4.7 + 1 

29.5 + 6 
9.2 + 3 
4.4 f 2 

-= 14 

72+7 

9 
0 
0 
59.5 
144 
142 

76.5 

54 
145 

93 
0 
12 
220 
78 
126 
4.5 
3.6 
20 
40 
15 

13.5 
20 
7 
1.8 
60 

helicity properties, which depend critically on the type of coupling are \3 m e  in our 
model as can be seen from table 4. 

The unfavourable comparison with experiment for the K**( 1240) -, K*n and 
A ,  + pn decays is perhaps mitigated by possible contamination of the resonances by 
the Deck effect (Particle Data Group 1973). 

Table 4. Predicted ratio of helicity amplitudes for 1 + + 1-0- decays compared with data 
from Colglazier and Rosner (1972). 

B -+on 1.0 0.2 + 0.7 0.19 

A1 -P PR 1.0 2.0 + 1.1 1.3 

6. Conclusions 

We do not test the harmonic oscillator character of our wavefunctions because only the 
lowest two states are used, it is the spin structure we test. However, our basic assumption 
of harmonic oscillator forces gave rise to the spin structure so that any success of the 
model is attributable to this assumption. 
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The large components of the wavefunctions are analagous to boosted non-relativistic 
wavefunctions and occur in all relativistic models. The main difference arises from 
whether mquark or mhadron is regarded as the fundamental mass. The novel feature of our 
model is the inclusion of a spin-orbit term in the small components which, nonetheless, 
did not cause splitting of the trajectories. This extra orbital term is needed to produce 
some of our good results, the least ambiguous case being the electromagnetic decays 
where the orbital term contributes half ofthe result. We regard this success in the electro- 
magnetic case as our most important result, as it does not depend on arbitrary parameters. 

The significance of the results for the decay widths is harder to evaluate because the 
prescription which replaces the pseudoscalar interaction by the divergence of the axial 
vector current is not quite as well established as the corresponding formalism for electro- 
magnetic decays. Further, we do  not adhere strictly to PCAC theory as we use a coupling 
constant different (but not by much) from the theory. 

Given that the relative success for any one decay type just depends on the SU(3) 
symmetryand the prescription to  use unbroken masses, the fact that thecoupling constant 
is an independent parameter means that table 3 contains only four independent results. 
Also, because the data for the 1" + 1-0- decay is ambiguous, there are really only 
three numbers to  compare with experiment. Of these, two compare well while the third, 
B --* x o  is a factor of two out. This lack of success may be due to our decision not to 
modify the axial vector current so that it corresponds to a conserved electromagnetic 
current. 

To summarize, we have proposed an equation in which the internal quark motion is 
closely related to  that in a non-relativistic model but is treated in a covariant way. Our 
model is most closely related to  that of FKR but has the advantage of incorporating spin 
in a more dynamical way. In compensation for their simple treatment of spin, FKR are 
able to  include baryons in their scheme. The extension of our model to  include baryons 
is clearly the next step. 
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Appendix 

A brief outline of the method of solution to equation (2.13) 

We consider equation (2.13) in the rest frame excluding the time-like excitations. 
Defining p = m 0 / J ( 2 0 )  and E = m/ J ( 2 o )  the quark-quark equation is 

Writing the wavefunction 

where l i ) ,  i = 1,2,3,4, are 2 x 2 Pauli wavefunctions, equation (A.l) becomes the set of 
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coupled equations : 

where 13 + 2) = 13) + 12) etc. With some manipulation equations (A.2) may be reduced 
to a single eigenvalue equation 

(t2-p2)14+ 1) = ( a l - a2 ) . a t ( a l - a2 ) . a~4+  1)+(a1+a2).a(a,+a2).at14+1). (A.3) 

PC = - I  solutions 

Parity and charge conjugation (equation (3.3)) imply that 

l4+ 1) = ( ') 14). -1 0 

I t  may now be verified that (al + a2).  atl4+ 1) = 0 and hence equation (A.3) reduces to 
the eigenvalue equation 

( € 2 - p 2 - 4 0 +  . a ) [ $ )  = 0. (A.4) 

From angular momentum conservation 14) = jN:J,  J,)  with the notation of§ 4.1. The 
full solution for the rest frame is now easily constructed. Equation (4.1) is obtained by 
boosting into a general frame. 

PC = + 1 solutions 

Parity and charge conjugation imply in this case that (4-t 1) is a pure spin one object 
and hence we may write 

Now equation ( A . 3 )  rediices 10 three dtgcnerate eiger:.. alue equations 

( e 2 - p z - - 3 ( ~ +  . a + Z ) ) : j  > = O f' = Lt. (1. h .  (A.5) 

Clearly, this demands that If) be an eigenstate of the number operator, but for j  = I f  1 
both orbital angular momenta I and I f  2 are allowed i n  general and relative proportion 
is not determined. This is the ambiguity referred to in the text. In  t h c  solution (4.5) we 
assumed that the rest frame solution contained no contamination from spin zero, which 
is equivalent to asserting that 13 + 2 )  = 0. We may now substitute hack into equations 
(A.2)and obtain the fullsolution for therest frame. Equation(3.5115 obtained b! boosting 
into a general frame. 

We also note that equation (A.5)  contains n o  spin-orbit interaction a n d  so there is 
no spin-orbit splitting. However, the  small components 12) and 13) will contain spin- 
orbit coupling terms and this is simply a consequence of parity conservation. 
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